\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Complete Metric Spaces
›
Complete Real Inner Product Spaces
›
Needed by:
None.
Links:
Sheet PDF
›
Graph PDF
›
Closest Point Property
Result
Suppose $X$ is a complete inner product space, $A \subset X$ closed and convex, and $x \in X$.
There exists a unique $z \in X$ satisfying
\[ d(z, x) = \inf_{y \in A} d(y, x). \]
Closest Point Property
Links:
Sheet PDF
›
Graph PDF
›
Needs:
Complete Metric Spaces
›
Complete Real Inner Product Spaces
›
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version
13a6779cc
—
About
—
Show the old page view