\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Plane
Needed by:
Complex Circular Coordinates
Links:
Sheet PDF
Graph PDF

Circular Coordinates

Why

We identified points in $\R ^2$ with elements of the plane in a natural way.1

Definition

Let $(x, y) \in \R ^2$. Then $(r, \theta ) \in \R ^2$ is the polar form or circular form of $(x, y)$ if

\[ x = r \cos \theta \quad \text{ and } \quad y = r \sin \theta . \]

In this case we call $r$ and $\theta $ the circular coordinates or polar coordinates.

Since $\sin$ and $\cos$ polar coordinates are not unique.

Non-uniqueness

A difficulty with polar coordinates is that there are many elements of $\R ^2$ that correspond to the same point in the plane. For example, consider the points

\[ (5, \pi /3), (5, -5\pi /3), (-5, 4\pi /3), (-5, -2\pi /3). \]

Each of these specifies the same point in $\R ^2$.


  1. Future editions will expand on this in the genetic approach, and likely reference celestial motion. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view