\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Convex Multivariate Functions
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Characterizations of Convex Functions

Why

Convex functions satisfy an interpolation property.

Discussion

By definition, given $S \subset \R ^n$, $f: S \to \R $ is convex means that the point

\[ (1 - \lambda )(x \mu ) + \lambda (x, \nu ) = ((1-\lambda )x + \lambda y, (1-\lambda )\mu + \lambda \nu \]

belongs to $\epi f$ whenever $(x, \mu )$ and $(y, \nu )$ belong to $\epi f$ and $0 \leq \lambda \leq 1$. Said differently, we have $(1-\lambda )x + \lambda y \in S$, and

\[ f((1-\lambda )x + \lambda y) \leq (1-\lambda )\mu + \lambda \nu \]

whenever $x \in S$, $y \in S$, $f(x) \leq \mu \in \R $, and $f(y) \leq \nu \in \R $.

Concave functions have a similar property, with the inequalities flipped, and affine functions satisfy with qualities. This shows that the functions $f: \R ^n \to \R $ we are calling affine coincide exactly with the affine transformations from $\R ^n$ to $\R $.

Visualization

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view