\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Random Variables
Real-Valued Random Variable Variance
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Central Limit Theorem

Why

The (normalized) sum of several independent and identically distributed random variables tends toward a normal distribution.1

Result

Let $(X, \mathcal{A} , \mu )$ be a probability space. Let $\seq{f}$ be a sequence of independent and identically distributed real-valued random variables on $X$ with $\E (\seqt{f}) = \mu < \infty$ and $\var(\seqt{f}) = \sigma ^2 < \infty$ for all $n$. Define $s_n = \sum_{i = 1}^{n}f_i$. For all real numbers $t$,

\[ \lim_{n \to \infty} \mu \Set*{ x \in X }{ \frac{ s_n(x) - n\mu }{ \sigma \sqrt{n} } \leq t } = \Phi (t). \]


  1. Future editions may modify this statement and further specify the word “tends.” ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view