\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Functions
Equivalence Relations
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Canonical Maps

Why

How do equivalence classes and functions relate?

Definition

We can associate to each element of a set its equivalence class under an equivalence relation. Let $X$ denote a set and $R$ an equivalence relation. We call the function $f: X \to X/R$ defined by $f(x) = x/R$ the canonical map from $X$ to $X/R$.

Conversely, if $f$ is an arbitrary function from $X$ onto $Y$, we can naturally define an equivalence relation $R$ in $X$ so that for $a, b \in X$, $a\,R\,b \iff f(a) = f(b)$ $f$ was onto, so for each $y \in Y$, there exists an $x \in X$ with $f(x) = y$. Now let $g: Y \to X/R$ be defined by $g(y) = x/R$. The values of $g$ are the subset $X$ which are mapped to the same value under $f$. Moreover, the function $g$ is one-to-one.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view