\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Bounded Linear Transformations
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Bounded Linear Norm

Why

We can give the set of bounded linear functions between two norm spaces a norm.

Definition

The norm of a bounded linear function is the smallest real number by which we can bound the result on a vector times the norm of that vector.

Notation

Let $((V_1, F_1), \norm{\cdot }_1)$ and $((V_2, F_2), \norm{\cdot }_2)$ be two norm spaces. Let $f: V_1 \to V_2$ be linear and bounded. The norm of $f$ is the smallest $C$ so that

\[ \norm{f(v)}_2 \leq C\norm{v}_1. \]

Equivalent formulation

Let $((V_1, F_1), \norm{\cdot }_1)$ and $((V_2, F_2), \norm{\cdot }_2)$ be two norm spaces. Let $f: V_1 \to V_2$ bounded and linear. The norm of $f$ is

\[ \sup_{\norm{x}_1 = 1} \norm{f(x)}_2. \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view