\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Knapsack Problems
Needed by:
Change-Making Problems
Links:
Sheet PDF
Graph PDF

Bounded Knapsack Problems

Why

We consider the knapsack problem in which the $n$ items are considered to be types of items and we have a certain quantity of each.

Definition

Suppose we have zero-one knapsack problem data $(p, w, c)$ where $p: [n] \to \R $ is the profit function, $w: [n] \to \R _+$ is the weight function, and $c \in \R _+$ is the capacity constraint. Given budgets $b_1, \dots , b_n \in \Z _+$, find $x \in \Z _+^n$ to

\[ \begin{aligned} \text{minimize } & \quad \sum_i p_ix_i \\ \text{subject to } & \quad \sum_i w_ix_i \leq c \\ & \quad 0 \leq x_i \leq b_i, \quad i = 1, \dots , n, \\ &\quad x_i \in \Z \quad i = 1, \dots , n \end{aligned} \]

The above is called the bounded knapsack problem. The problem above without the budget constraints, is called the unbounded knapsack problem.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view