\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Affinely Independent Vectors
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Barycentric Coordinates

Defining result

If $M = \aff\set{b_0, b_1, \dots , b_m}$ then for each $x \in M$ there exists $(\lambda _i)$ such that

\[ x = \lambda _0 b_0 + \lambda _1 b_1 + \cdots + \lambda _m b_m \]

with $\sum_{i} \lambda _i = 1$.
The $(\lambda _i)$ are unique if the set of vectors is affinely independent.

The barycentric coordinates for a vector $x$ in the affine hull of a set of affinely independent vectors is the sequence of unique coefficients expressing the vector as an affine combination of the set of vectors.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view