\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Interval Length
Needed by:
Complex Numbers
Convergence In Measure
Convergence In Probability
Function Growth Classes
Functionals
Integrable Function Spaces
Metric Space Examples
Metrics
Plane Norm
Pointwise and Measure Limits
Real Continuity
Real Egoprox Sequences
Real Integral Monotone Convergence
Real Limits
Real Norm
Supremum Norm
Links:
Sheet PDF
Graph PDF

Absolute Value

Why

We want a notion of distance between elements of the real line.

Definition

The absolute value of a real number is the greater of itself and its additive inverse. In other words, if $x$ is positive, then the absolute value of $x$ is $x$. If $x$ is negative, then the absolute value of $x$ is $-x$ (a positive real number).

Notation

We denote the absolute value of a real number $x \in \R $ by $\abs{x}$.

Distance

The absolute value can be interpreted as the distance between the point corresponding to the real number and the point corresponding to 0. We can generalize this idea. Consider $x, y \in \R $. If $x > y$, then $x - y > 0$ and so the distance between the corresponding points is $x - y$. If $x < y$ then $y - x > 0$, and so the distance is $y - x$.

The observation is that $\abs{-x} = \abs{x}$. So

\[ \abs{y - x} = \abs{-(x - y)} = \abs{x-y}. \]

So if we just care about the distance between the points corresponding to $y$ and $x$, we can consider $\abs{x - y}$, without regard for their order. In other words, the function $(x, y) \mapsto \abs{x - y}$ is symmetric in $x$ and $y$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view